Your PV installation – Some Considerations (8 min read)

Image: Wendy McLean

We are in a transitional time. Sometimes issues are addressed only belatedly as a governing body encounters them. When I took my first solar course, we were told a story. Apparently, when incentive programs for solar PV first began in sunny California, they were paid according to Watts installed. After a time, it was realized that this led to a significant number of installations that didn’t actually produce very much power, with PV even being placed on north-facing walls. The state wasn’t getting very much for it’s investment! The program was later changed so that the incentive was paid according to energy actually produced (Watt-hours). California now also has regulations governing acceptable site assessment tools to ensure solar access (avoiding shading).

Technical Safety BC provides regulatory safety for solar PV installations in BC via the electrical permit system and its licensing of electricians. Permits and licensing are there for several reasons. Safety – to prevent electrocution injuries and fires; damage to equipment and to ensure that your installation is safe for the next home or building owner. If as a customer, you want to add any new equipment, solar or otherwise, expect that some updating of your old system or equipment may be required before you can invest in your additional new equipment. An electrician will make up some part of your installation team, even if your PV supplier is not one. Be prepared and plan for this when planning spending.

What about cheaper solar equipment on line?

The equipment or system looking cheaper online may not contain all the required parts to make it work or meet local code or its parts may not all be compatible and work properly. Please do not think you can order your panels online cheaper than your local installer. Or, rather – you can, but who is going to ensure the whole thing works? You may even find a contractor willing to install the stuff you order – but they are not going to work for free when it doesn’t install as expected, needs parts, needs troubleshooting or doesn’t pass inspection. In the end, this route might not be more affordable.

Please look for a responsible and reputable installer and pay them for the equipment they know and trust. Your installer will (ideally) have taken time and money to learn how to install solar equipment properly. Taking time from work to learn best practice and pay for tuition costs them money. Support the local installer that is doing quality work; invest in your community. Having said that, if you need to look further afield to find an installer that is able to answer all your questions and provide the best service, that can be more affordable than going with one who has not taken the time to learn best practice. You are not looking for the installer that tells you what you want to hear, but the one that tells you the truth.

Should I wait for newer, better PV before I invest?

There’s no need to wait. Tech is always changing and improving, but the essential PV panels and equipment is well established and won’t likely change too much in the very near future.

What about maintenance?

Most maintenance and renovation work in renewable energy systems is prevented altogether with accurate and thoughtful design in the first place. The correct use of solar siting tools during site assessment will avoid current (and hopefully future) shading from vegetation growth or power lines and other objects. The use of established, reputable, quality equipment will reduce (although not necessarily avoid) equipment issues. If you have chosen both a reliable installer and reliable equipment, issues should be resolved fairly rapidly. If they cannot be resolved with the installer, talk to the manufacturer. As a last resort, which unfortunately does happen, you may need to find another installer to remedy your situation. This, unfortunately happens in all industries. The prevention is doing your homework and choosing wisely.

Off-grid, ground mount designs need to plan for snowpack and animal and human access (access is now covered by the BC electrical code). Panel maintenance will include an occasional gentle hosing off of dust or brushing off of snow that will improve production.

Problems with solar can develop. Cracking of lenses, loose electrical connections or loose panels and growth of nearby vegetation causing shading can occur. Modern electronic solar equipment like optimizers, mini-inverters and larger inverters perform system management that was barely conceivable only a few years ago. They are quite amazing and most of the time work extremely well, but failures do happen, even in quality brands; quality means it is less likely and will be easily sorted out when it happens.

Both grid-tied and off-grid owners should be aware of your actual, normal and estimated monthly production and be on alert for any unexplained inconsistencies, which can be investigated. Other than that, a visual inspection done semi-annually of all parts to correct any detected issues (like loose connections or panels) should keep your system in good repair and running trouble-free. For off-grid folks with pole arrays, your semi-annual visual inspection can be when you go out and change your array angle for summer and winter.

Battery types and brands vary in maintenance requirements, so follow your installer’s and manufacturer’s instructions and ensure that your equipment is charging at the expected frequency and getting the expected results and/or have that included in a maintenance contract.

About Mechanical Trackers

Trackers were used for off-grid pole mount installations in the old days before LED lighting and high-wattage PV panels, when life off-grid was pretty limited, electrically-speaking. They allowed the PV array to change its angle to the sun (making it more direct or closer to perpendicular) in one or two planes (single and dual axis) to physically track the sun over the course of the day to maximize production. Today they are often used in grid-tied installations in some jurisdictions as they can be quite cost-effective, if the price being paid by the utility for your production is high enough. Currently, in BC, our main utilities do not pay high prices for small power producers. BC Hydro is currently paying approximately 10 cents per kWhr.

For either off-grid or grid-tied installations, a cost benefit comparison should be made to evaluate if a tracker is a reasonable investment. The production value of the tracker must be compared to the total cost of the tracker: its installation, plus maintenance costs and lost income during its downtimes, which will most definitely happen. Crunch the numbers if you are considering this, but I have yet to see one for a small producer (grid-tied or off-grid) in BC that is justified. In most circumstances, if you want more production and have the space and solar access, it is more economically effective to simply add more panels.

About Racking

Ground Mounts

Now, you know from my website here that I am all about appropriate materials and decreasing cement and metals use. But there are places for these materials and your power production racking is one of them. In most cases, over the lifetime of the installation, using these higher embodied energy structural materials will still cost the environment less than a wood frame racking that has to be replaced one or more times during the equipment’s lifetime.

Wood racking is completely acceptable for small installations but ideally will be made with larger timbers, not small dimensional lumber. Ultimately, even a well-made wood frame will deteriorate before the life of that PV array, so why not just build the frame to match and not risk those conductors to a shifting frame in the future? Install racking that will hold up to the lifetime of the equipment and weather our Canadian climate that includes exposure to snow, wind, rain, sun and repeated freeze-thaw cycles.

Roof Mounts

Reputable installers will have roof racking and installation procedures for preventing water penetration for all roof types. If you are building new, standing seam steel roofs provide a surface for solar clamp attachment that gives excellent structural support and avoids roof penetrations altogether. If you have a shingle roof that is in need of replacement soon you will most likely want to wait until it is replaced to install your PV system but you can check in with your roofer and PV supplier about your plans to help you decide when to proceed.